


C
PROBLEM SOLVING AND
PROGRAM DESIGN

E I G H T H  E D I T I O N
G L O B A L  E D I T I O N

in

A01_HANL8814_08_GE_FM.indd   1 15/06/15   3:08 PM



A01_HANL8814_08_GE_FM.indd   2 15/06/15   3:08 PM

               this page intentionally left blank



    Boston    Columbus    Indianapolis    New York    San Francisco    Hoboken   
Amsterdam    Cape Town    Dubai    London    Madrid    Milan    Munich    Paris    Montreal    Toronto  Delhi  

Mexico City    Sao Paulo    Sydney    Hong Kong    Seoul    Singapore    Taipei    Tokyo

Jeri R. Hanly,

Global Edition Contributions by
Mohit P. Tahiliani, National Institute of Technology, Surathkal

University of Wyoming

Elliot B. Koffman, Temple University

C
in

PROBLEM SOLVING AND
PROGRAM DESIGN

E I G H T H  E D I T I O N
G L O B A L  E D I T I O N

A01_HANL8814_08_GE_FM.indd   3 15/06/15   3:08 PM



Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Project Management Team Lead: Scott Disanno
Program Manager: Carole Snyder
Senior Project Manager: Camille Trentacoste
Assistant Acquisitions Editor, Global Edition: Aditee Agarwal

Associate Project Editor, Global Edition: Sinjita Basu
Media Production Manager, Global Edition: Vikram Kumar  
Senior Manufacturing Controller, Production, Global Edition: Trudy Kimber
Operations Supervisor: Vincent Scelta
Operations Specialist: Maura Zaldivar-Garcia
Full-Service Project Management: Cenveo® Publisher Services
Cover Design: Lumina Datamatics
Cover Photo Source: Shutterstock
Cover Printer: Courier Kendallville

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Jeri R. Hanly and Elliot B. Koffman to be identified as the authors of this work have been asserted by them in accordance with the 
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Problem Solving and Program Design in C, 8th Edition, 978-0-134-01489-0, by Jeri R. 
Hanly and Elliot B. Koffman, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, 
mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying 
in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the author or publisher any 
trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related 
graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. 
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and condi-
tions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft 
and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or 
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information 
available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added 
to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) 
described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1-292-09881-3
ISBN 13: 978-1-292-09881-4

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in New Caledonia 10/12 by Cenveo® Publisher Services.

Printed and bound by Courier Kendallville in the United States of America.

A01_HANL8814_08_GE_FM.indd   4 22/06/15   6:38 PM



This book is dedicated to 

Jeri Hanly’s family:

Brian, Kevin, Laura, Grace, and Caleb

Trinity, Alex, Eva, Eli, and Jonah

Eric, Jennifier, Mical, Micah, Josiah, and Rachel

Elliot Koffman’s family:

Caryn and Deborah

Richard, Jacquie, and Dustin

Robin, Jeffrey, Jonathan, and Eliana

A01_HANL8814_08_GE_FM.indd   5 15/06/15   3:08 PM



A01_HANL8814_08_GE_FM.indd   2 15/06/15   3:08 PM

               this page intentionally left blank



P r e f a c e

Problem Solving and Program Design in C teaches a disciplined approach to problem 
solving, applying widely accepted software engineering methods to design program 
solutions as cohesive, readable, reusable modules. We present as an implementation 
vehicle for these modules a subset of ANSI C—a standardized, industrial-strength 
programming language known for its power and portability. This text can be used for 
a first course in programming methods: It assumes no prior knowledge of computers 
or programming. The text’s broad selection of case studies and exercises allows an 
instructor to design an introductory programming course in C for computer science 
majors or for students from a wide range of other disciplines.

New to This Edition

Several changes to this edition are listed below. The majority of these changes are in 
response to the recommendations of our reviewers.

•	 Chapter 0 information on professional opportunities in computing has been 
extensively updated.

•	 Hardware examples in Chapter 1 have been brought up-to-date to reflect cur-
rent technology.

•	 Discussion of programming languages in Chapter 1 has been revised to list the 
most popular languages in use today.

•	 Chapters on arrays, strings, files, and dynamic data structures have been 
renamed and reworked to place greater emphasis on the use of pointers.

•	 Chapter 6 coverage of levels of testing has been updated.
•	 All chapters contain new programming project problems, and beginning with 

Chapter 5, some projects are marked as especially appropriate for team pro-
gramming.

•	 Three chapters contain new “C in Focus” articles—“Team Programming” 
(Chapter 5), “Defensive Programming” (Chapter 8), and “Evolving Standards” 
(Chapter 10).

•	 Format of many tables, including those that trace execution of code, has been 
altered to improve readability.

•	 Exercises on bitwise operations have been added to Appendix C.

Using C to Teach Program Development

Two of our goals—teaching program design and teaching C—may be seen by some 
as contradictory. C is widely perceived as a language to be tackled only after one has 

A01_HANL8814_08_GE_FM.indd   7 15/06/15   3:08 PM



8 Preface

learned the fundamentals of programming in some other, friendlier language. The 
perception that C is excessively difficult is traceable to the history of the language. 
Designed as a vehicle for programming the UNIX operating system, C found its 
original clientele among programmers who understood the complexities of the oper-
ating system and the underlying machine and who considered it natural to exploit 
this knowledge in their programs. Therefore, it is not surprising that many textbooks 
whose primary goal is to teach C expose the student to program examples requiring an 
understanding of machine concepts that are not in the syllabus of a standard introduc
tory programming course.

In this text, we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as 
our primary one. One might fear that this choice would lead to a watered-down 
treatment of ANSI C. On the contrary, we find that the blended presentation of 
programming concepts and of the implementation of these concepts in C captures 
a focused picture of the power of ANSI C as a high-level programming language, 
a picture that is often blurred in texts whose foremost objective is the coverage of 
all of ANSI C. Even following this approach of giving program design precedence 
over discussion of C language features, we have arrived at coverage of the essential 
constructs of C that is quite comprehensive.

Pointers and the Organization of the Book

The order in which C language topics are presented is dictated by our view of the 
needs of the beginning programmer rather than by the structure of the C programming 
language. The reader may be surprised to discover that there are multiple chapter titles 
that include the word “Pointers.” This follows from our treatment of C as a high-level 
language, and our recognition that the critical role of pointers in C is often a challeng-
ing concept for students to grasp.

Whereas other high-level languages have separate language constructs for output 
parameters and arrays, C openly folds these concepts into its notion of a pointer, dras-
tically increasing the complexity of learning the language. We simplify the learning 
process by discussing pointers from these separate perspectives where such topics 
normally arise when teaching other programming languages, thus allowing a student 
to absorb the intricacies of pointer usage a little at a time. Our approach makes pos-
sible the presentation of fundamental concepts using traditional high-level language 
terminology—output parameter, array, array subscript, string—and makes it easier 
for students without prior assembly language background to master the many aspects 
of pointer usage. This approach is also helpful for students studying C as a second 
programming language, since it facilitates their understanding of the many aspects of 
pointer use as simply C’s means of implementing constructs they have already met.

Therefore, this text has not one but five chapters that discuss pointer con-
cepts. Chapter 6 (Pointers and Modular Programming) begins with a discussion of 
pointers, indirect reference, and the use of pointers to files. It then discusses the 
use of pointers as simple output and input/output parameters, Chapter 7 deals with 

A01_HANL8814_08_GE_FM.indd   8 15/06/15   3:08 PM



Preface 9

arrays, Chapter 8 presents strings and arrays of pointers. Chapter 11 discusses file 
pointers again. Chapter 13 describes dynamic memory allocation after reviewing 
pointer uses previously covered.

Software Engineering Concepts

The book presents many aspects of software engineering. Some are explicitly discussed 
and others are taught only by example. The connection between good problem-solving 
skills and effective software development is established early in Chapter 1 with a sec-
tion that discusses the art and science of problem solving. The five-phase software 
development method presented in Chapter 1 is used to solve the first case study and is 
applied uniformly to case studies throughout the text. Major program style issues are 
highlighted in special displays, and the coding style used in examples is based on guide-
lines followed in segments of the C software industry. There are sections in several 
chapters that discuss algorithm tracing, program debugging, and testing.

Chapter 3 introduces procedural abstraction through selected C library func-
tions, parameterless void functions, and functions that take input parameters and 
return a value. Chapters 4 and 5 include additional function examples including the 
use of a function as a parameter, and Chapter 6 completes the study of functions 
that have simple parameters. The chapter discusses the use of pointers to represent 
output and input/output parameters.

Case studies and sample programs in Chapters 6, 7, and 10 introduce by exam-
ple the concepts of data abstraction and encapsulation of a data type and operators. 
Chapter 12 presents C’s facilities for formalizing procedural and data abstraction 
in personal libraries defined by separate header and implementation files. Chapter 
14 (on the textbook website) introduces essential concepts of multiprocessing, such 
as parent and child processes, interprocess communication, mutual exclusion lock-
ing, and deadlock avoidance. Chapter 15 (on the textbook website) describes how 
object-oriented design is implemented by C++.

The use of visible function interfaces is emphasized throughout the text. We do 
not mention the possibility of using a global variable until Chapter 12, and then we 
carefully describe both the dangers and the value of global variable usage.

Optional Graphics Sections

Many computer science faculty find that the use of graphics is an excellent 
motivator in the study of introductory programming and as a vehicle to help 
students understand how to use libraries and to call functions. This text offers three 
optional sections with graphics examples:

Section   3.6:	 Introduction to Computer Graphics
Section 5.11:	 Loops in Graphics Programs
Section 7.10:	 Graphics Programs with Arrays

To reduce the overhead required to introduce graphics, we use WinBGIm 
(Windows BGI with mouse), which is a package based on the Turbo Pascal BGI 

A01_HANL8814_08_GE_FM.indd   9 15/06/15   3:08 PM



10 Preface

Figure 1

(Borland Graphics Interface) library. WinBGIm was created to run on top of the 
Win32 library by Michael Main and his students at the University of Colorado. 
Several development platforms appropriate for CS 1 courses have incorporated 
WinBGIm. Quincy (developed by Al Stevens) is an open-source student-oriented 
C++ IDE that includes WinBGIm as well as more advanced libraries (http://www 
.codecutter.net/tools/quincy). Figure 1 shows the Quincy new project window  
(File → New → Project) with WinBGIm Graphics application selected.

A command-line platform based on the open-source GNU g++ compiler and 
the emacs program editor is distributed by the University of Colorado (http://www 
.codecutter.net/tools/winbgim). WinBGIm is also available for Bloodshed Software’s 
Dev-C++ and Microsoft’s Visual Studio C++.

Pedagogical Features

We employ the following pedagogical features to enhance the usefulness of this 
book as a learning tool:

End-of-Section Exercises   Most sections end with a number of Self-Check 
Exercises. These include exercises that require analysis of program fragments as 
well as short programming exercises. 

A01_HANL8814_08_GE_FM.indd   10 15/06/15   3:08 PM



Preface 11

Examples and Case Studies   The book contains a wide variety of programming 
examples. Whenever possible, examples contain complete programs or functions 
rather than incomplete program fragments. Each chapter contains one or more 
substantial case studies that are solved following the software development method. 
Numerous case studies give the student glimpses of important applications of 
computing, including database searching, business applications such as billing and 
sales analysis, word processing, and environmental applications such as radiation 
level monitoring and water conservation.

Syntax Display Boxes   The syntax displays describe the syntax and semantics of 
new C features and provide examples.

Program Style Displays   The program style displays discuss major issues of good 
programming style.

Error Discussions and Chapter Review   Each chapter concludes with a 
section that discusses common programming errors. The Chapter Review includes 
a table of new C constructs.

End-of-Chapter Exercises   Quick-Check Exercises with answers follow each 
Chapter Review. There are also review exercises available in each chapter.

End-of-Chapter Projects   Each chapter ends with Programming Projects giving 
students an opportunity to practice what they learned in the chapter.

Appendices

Reference tables of ANSI C constructs appear on the inside covers of the book. 
Because this text covers only a subset of ANSI C, the appendices play a vital role in 
increasing the value of the book as a reference. Throughout the book, array refer-
encing is done with subscript notation; Appendix A is the only coverage of pointer 
arithmetic. Appendix B is an alphabetized table of ANSI C standard libraries. The 
table in Appendix C shows the precedence and associativity of all ANSI C operators; 
the operators not previously defined are explained in this appendix. Exercises for 
practicing some of the bitwise operators are included. Appendix D presents charac-
ter set tables, and Appendix E lists all ANSI C reserved words.

Supplements

The following supplemental materials are available to all readers of this book at 
www.pearsonglobaleditions.com/Hanly:
•	 Source code
•	 Known errata
•	 Answers to odd-numbered Self-Check exercises.

The following instructor supplement is available only to qualified instructors at 
the Pearson Instructor Resource Center. Visit www.pearsonglobaleditions.com/Hanly 
or contact your local Pearson sales representative to gain access to the IRC.
•	 Solutions Manual

A01_HANL8814_08_GE_FM.indd   11 15/06/15   3:08 PM



12 Preface

 Acknowledgments

Many people participated in the development of this textbook. The reviewers for 
this edition, who suggested most of the changes, include Michael Geiger, UMASS 
Lowell, Lowell, MA; Qi Hao, University of Alabama, Tuscaloosa, AL; Haibing Lu, 
Santa Clara University, Santa Clara, CA; Susan Mengel, Texas Tech University, 
Lubbock, TX; Shensheng Tang, Missouri Western State University, St. Joseph, MO; 
Kevin Mess, College of Southern Nevada, Las Vegas, NV; Samir Iabbassen, Long 
Island University, Brooklyn, NY; and Ray Lauff, Temple University, Philadelphia, PA. 
We would also like to acknowledge Michael Main for his assistance with the graphics 
examples and his students at the University of Colorado who adapted WinBGI to cre-
ate WinBGIm (Grant Macklem, Gregory Schmelter, Alan Schmidt, and Ivan Stashak).

We also want to thank Charlotte Young of South Plains College for her help in 
creating Chapter 0, and Jeff Warsaw of WaveRules, LLC, who contributed substantially 
to Chapter 14. Joan C. Horvath of the Jet Propulsion Laboratory, California Institute 
of Technology, contributed several programming exercises, and Nelson Max of the 
University of California, Davis suggested numerous improvements to the text. Jeri 
acknowledges the assistance of her former colleagues at Loyola University Maryland—
James R. Glenn, Dawn J. Lawrie, and Roberta E. Sabin—who contributed several 
programming projects. We are also grateful for the assistance over the years of several 
Temple University, University of Wyoming, and Howard University former students 
who helped to verify the programming examples and who provided answer keys for 
the host of exercises, including Mark Thoney, Lynne Doherty, Andrew Wrobel, Steve 
Babiak, Donna Chrupcala, Masoud Kermani, Thayne Routh, and Paul Onakoya. 

It has been a pleasure to work with the Pearson team in this endeavor. Tracy 
Johnson (Executive Editor), Carole Snyder (Program Manager), and Camille 
Trentacoste (Senior Project Manager) provided ideas and guidance throughout the 
various phases of manuscript revision.

J.R.H.
E.B.K.

Pearson wishes to thank and acknowledge the following reviewers for their work on 
the Global Edition:

Vikas Deep Dhiman, Amity University

Ll Xin Cindy, The Hong Kong University of Science and Technology

Piyali Sengupta, Freelance Writer

A01_HANL8814_08_GE_FM.indd   12 15/06/15   3:08 PM



Cont    e nts 

0.	 Computer Science as a Career Path	 21

Section 1	 Why Computer Science May be the Right Field for You  22
Section 2	 �The College Experience: Computer Disciplines  

and Majors to Choose From  24
Section 3	 Career Opportunities  29

1.	 Overview of Computers and Programming	 33

1.1	 Electronic Computers Then and Now  34
1.2	 Computer Hardware  37
1.3	 Computer Software  45
1.4	 The Software Development Method  52
1.5	 Applying the Software Development Method  56
	 Case Study: Converting Miles to Kilometers  56
1.6	 Professional Ethics for Computer Programmers  59
	 Chapter Review  61

2.	 Overview of C	 65

2.1	 C Language Elements  66
2.2	 Variable Declarations and Data Types  73
2.3	 Executable Statements  79
2.4	 General Form of a C Program  89
2.5	 Arithmetic Expressions  92
	 Case Study: Supermarket Coin Processor  102
2.6	 Formatting Numbers in Program Output  107
2.7	 Interactive Mode, Batch Mode, and Data Files  110
2.8	 Common Programming Errors  113
	 Chapter Review  119

A01_HANL8814_08_GE_FM.indd   13 15/06/15   3:08 PM



14 Contents

3.	 Top-Down Design with Functions	 127

3.1	 Building Programs from Existing Information  128
	 Case Study: Finding the Area and Circumference of a Circle  129
	 Case Study: Computing the Weight of a Batch of Flat Washers  132
3.2	 Library Functions  137
3.3	 Top-Down Design and Structure Charts  144
	 Case Study: Drawing Simple Diagrams  144
3.4	 Functions Without Arguments  146
3.5	 Functions with Input Arguments  156
3.6	 Introduction to Computer Graphics (Optional)  166
3.7	 Common Programming Errors  183
	 Chapter Review  184

4.	 Selection Structures: if and switch Statements	 193

4.1	 Control Structures  194
4.2	 Conditions  195
4.3	 The if Statement  205
4.4	 if Statements with Compound Statements  211
4.5	 Decision Steps in Algorithms  214
	 Case Study: Water Bill Problem   215
4.6	 More Problem Solving  224
	 Case Study: Water Bill with Conservation Requirements  225
4.7	 Nested if Statements and Multiple-Alternative Decisions  227
4.8	 The switch Statement  237
	 C in Focus: The Unix Connection  241
4.9	 Common Programming Errors  243
	 Chapter Review  244

5.	 Repetition and Loop Statements	 255

5.1	 Repetition in Programs  256
5.2	 Counting Loops and the while Statement  258
5.3	 Computing a Sum or a Product in a Loop  262
5.4	 The for Statement  267
5.5	 Conditional Loops  276
5.6	 Loop Design  281
5.7	 Nested Loops  288
5.8	 The do-while Statement and Flag-Controlled Loops  293
5.9	 Iterative Approximations  296
	 Case Study: Bisection Method for Finding Roots  298

A01_HANL8814_08_GE_FM.indd   14 15/06/15   3:08 PM



15Contents

5.10	 How to Debug and Test Programs  307
	 C in Focus: Team Programming  309
5.11	 Loops in Graphics Programs (Optional)  311
5.12	 Common Programming Errors  318
	 Chapter Review  321

6.	 Pointers and Modular Programming	 337

6.1	 Pointers and the Indirection Operator  338
6.2	 Functions with Output Parameters  342
6.3	 Multiple Calls to a Function with Input/Output Parameters  350
6.4	 Scope of Names  356
6.5	 Formal Output Parameters as Actual Arguments  358
6.6	 Problem Solving Illustrated  362
	 Case Study: Collecting Area for Solar-Heated House  362
	 Case Study: Arithmetic with Common Fractions  369
6.7	 Debugging and Testing a Program System  378
6.8	 Common Programming Errors  381
	 Chapter Review  381

7.	 Array Pointers	 397

7.1	 Declaring and Referencing Arrays  398
7.2	 Array Subscripts  401
7.3	 Using for Loops for Sequential Access  403
7.4	 Using Array Elements as Function Arguments  408
7.5	 Array Arguments  410
7.6	 Searching and Sorting an Array  423
7.7	 Parallel Arrays and Enumerated Types  428
7.8	 Multidimensional Arrays  436
7.9	 Array Processing Illustrated  441
	 Case Study: Summary of Hospital Revenue  441
7.10	 Graphics Programs with Arrays (Optional)  450
7.11	 Common Programming Errors  459
	 Chapter Review  460

8.	 Strings	 475

8.1	 String Basics  476
8.2	 String Library Functions: Assignment and Substrings  482
8.3	 Longer Strings: Concatenation and Whole-Line Input  491

A01_HANL8814_08_GE_FM.indd   15 15/06/15   3:08 PM



16 Contents

8.4	 String Comparison  496
	 C in Focus: Defensive Programming  498
8.5	 Arrays of Pointers  500
8.6	 Character Operations  506
8.7	 String-to-Number and Number-to-String Conversions  511
8.8	 String Processing Illustrated  518
	 Case Study: Text Editor  518
8.9	 Common Programming Errors  527
	 Chapter Review  529

9.	 Recursion	 541

9.1	 The Nature of Recursion  542
9.2	 Tracing a Recursive Function  548
9.3	 Recursive Mathematical Functions  556
9.4	 Recursive Functions with Array and String Parameters  562
	 Case Study: Finding Capital Letters in a String  562
	 Case Study: Recursive Selection Sort  565
9.5	 Problem Solving with Recursion  569
	 Case Study: Operations on Sets  569
9.6	 A Classic Case Study in Recursion: Towers of Hanoi  577
9.7	 Common Programming Errors  582
	 Chapter Review  584

10.	 Structure and Union Types	 591

10.1	 User-Defined Structure Types  592
10.2	 Structure Type Data as Input and Output Parameters  598
10.3	 Functions Whose Result Values Are Structured  604
	 C in Focus: Evolving Standards  606
10.4	 Problem Solving with Structure Types  608
	 Case Study: A User-Defined Type for Complex Numbers  608
10.5	 Parallel Arrays and Arrays of Structures  616
	 Case Study: Universal Measurement Conversion  618
10.6	 Union Types (Optional)  627
10.7	 Common Programming Errors  634
	 Chapter Review  634

11.	 Text and Binary File Pointers	 649

11.1	 Input/Output Files: Review and Further Study  650
11.2	 Binary Files  660

A01_HANL8814_08_GE_FM.indd   16 15/06/15   3:08 PM



17Contents

11.3	 Searching a Database  666
	 Case Study: Database Inquiry  667
11.4	 Common Programming Errors  676
	 Chapter Review  677

12.	 Programming in the Large	 685

12.1	 Using Abstraction to Manage Complexity  686
12.2	 Personal Libraries: Header Files  689
12.3	 Personal Libraries: Implementation Files  694
12.4	 Storage Classes  697
12.5	 Modifying Functions for Inclusion in a Library  701
12.6	 Conditional Compilation  704
12.7	 Arguments to Function main  708
12.8	 Defining Macros with Parameters  711
12.9	 Common Programming Errors  716
	 Chapter Review  717

13.	 Pointers and Dynamic Data Structures	 725

13.1	 Pointers  726
13.2	 Dynamic Memory Allocation  731
13.3	 Linked Lists  736
13.4	 Linked List Operators  742
13.5	 Representing a Stack with a Linked List  747
13.6	 Representing a Queue with a Linked List  751
13.7	 Ordered Lists  757
	 Case Study: Maintaining an Ordered List of Integers  758
13.8	 Binary Trees  769
13.9	 Common Programming Errors  779
	 Chapter Review  780

14.	 Multiprocessing Using Processes and Threads 
	 (Online at www.pearsonglobaleditions.com/Hanly)

14.1	 Multitasking
14.2	 Processes
14.3	 Interprocess Communications and Pipes
14.4	 Threads
14.5	 Threads Illustrated
	 Case Study: The Producer/Consumer Model

A01_HANL8814_08_GE_FM.indd   17 15/06/15   3:08 PM



18 Contents

14.6	 Common Programming Errors
	 Chapter Review

15.	 On to C++  
	 (Online at www.pearsonglobaleditions.com/Hanly)

15.1	 C++ Control Structures, Input/Output, and Functions
15.2	 C++ Support for Object-Oriented Programming
	 Chapter Review

Appendices	

A	 More about Pointers  789
B	 ANSI C Standard Libraries  795
C	 C Operators  813
D	 Character Sets  819
E	 ANSI C Reserved Words  821

Answers to Odd-Numbered Self-Check Exercises  
(Online at www.pearsonglobaleditions.com/Hanly)

Glossary	 823

Index	 829

A01_HANL8814_08_GE_FM.indd   18 15/06/15   3:08 PM



C
PROBLEM SOLVING AND
PROGRAM DESIGN

E I G H T H  E D I T I O N
G L O B A L  E D I T I O N

in

A01_HANL8814_08_GE_FM.indd   19 15/06/15   3:08 PM



A01_HANL8814_08_GE_FM.indd   2 15/06/15   3:08 PM

               this page intentionally left blank



Computer Science  
as a Career Path

Chapter Objectives
•	 To learn why computer science may be the right field 	

for you

•	 To become familiar with different computer disciplines 
and related college majors

•	 To find out about career opportunities

C HA  P TER 

0

M00_HANL8814_08_GE_C00.indd   21 05/06/15   5:22 PM



Introduction
In order to choose a course of study and eventually a desirable career path, we may 
ask many important questions. Why would we choose this field? Will we be good at 
it? Will there be jobs for us when we finish our education? Will we enjoy our work? 
This chapter sheds some light on these types of questions for anyone contemplating 
a degree in computer science or a related field.

Section 1	� Why Computer Science May Be the  
Right Field for You

Reasons to Major in Computer Science

Almost everything we do is influenced by computing. Today’s generation of college 
students, dubbed the Millennials, are not surprised by this statement. They have 
grown up with computers, the Internet, instant communication, social networking, 
and electronic entertainment. They embrace new technology and expect it to do 
fantastic things.

However, previous generations are not as comfortable with technology and try 
to solve problems without always thinking of technology first. Many people in the 
workforce resist the changes that technology requires. They often turn to the young-
est employees to take over technology issues and to make choices that will have 
important consequences.

This difference among generations creates a great environment for bright 
and dedicated students to choose to major in computer science or a related field. 
The computer industry is one of the fastest-growing segments of our economy and 
promises to continue to see growth well into the future. In order to be competitive, 
businesses must continue to hire well-trained professionals not only to produce 
high-quality products for the present, but also to plan creative scientific and engi-
neering advances for the future.

A person who is part of the computer industry can choose from a wide variety 
of fields where many interesting and challenging problems will need to be solved. 
In addition to all the business and communication jobs that may first come to 
mind, people with degrees in computer science are working on problems from 
all spectrums of life. A quick review of technical articles highlights such areas as 
developing electronic balloting for state and national elections, using signals from 
wireless devices to update vehicle and pedestrian travel times in order to make the 
best decisions for traffic signals or management of construction zones, and using a 
supercomputer-powered “virtual earthquake” to study benefits of an early warning 
system using 3-D models of actual geographic locations and damage scenarios.

Millennials  Those 
born from 1982 on are 
said to be confident, 
social and team-
oriented, proud of 
achievement, prone 
to use analytic skills to 
make decisions, and 
determined to seek 
security, stability, and 
balance for themselves

M00_HANL8814_08_GE_C00.indd   22 05/06/15   5:22 PM



23Section 1  •  Why Computer Science May Be the Right Field for You

Some problems being worked on right now by computer professionals in the medi-
cal world include understanding how the human brain works by modeling brain activa-
tion patterns with emphasis on helping people impacted by autism or disorders like 
paranoid schizophrenia; customizing a wide array of helpful devices for the physically 
impaired, from programmable robotic prostheses to digital “sight”; gathering informa-
tion from implanted pacemakers in order to make timely decisions in times of crisis; 
developing a computer system capable of recognizing human emotional states by analyz-
ing a human face in real time; and developing human–computer interfaces that allow a 
computer to be operated solely by human gestures in order to manipulate virtual objects.

The fields of security and law enforcement present many challenges to the com-
puter professional, and include the following: The U.S. government is performing 
observational studies on normal behavior in online worlds in hopes of developing 
techniques for uncovering online activities of terrorist groups. Advancements in 
voice biometrics technology allow speech to be analyzed by computer software to 
determine identity, truthfulness, and emotional states. Electronic protection against 
malicious software is of great concern to national economies and security interests.

Some of our world’s most challenging problems will be worked on by teams of 
professionals from many disciplines. Obviously, these teams will include computer pro-
fessionals who are creative and possess the knowledge of how to best use technology. 
In the near future, we will see much innovation in the areas of the human genome pro-
ject, environmental monitoring, AIDS vaccine research, clean fuels, tracking weather 
changes by using robots in potentially dangerous areas, and using supercomputers to 
simulate the earth’s architecture and functions in order to predict natural disasters. A 
way to make a positive difference in the world would be to study computing, either as 
your primary focus or as a means of advancing technology in another field.

Traits of a Computer Scientist

An individual’s personality and character traits typically influence the field he or 
she chooses to study and eventually in which he or she will work. The demands of 
certain fields are met by individuals with certain capabilities. It makes sense that 
people who are successful computer science students will have many common traits. 
Read the following description and decide if it sounds like you.

Foremost, you must love the challenge of solving problems. Computer science 
is more about finding solutions to problems than it is about using the current com-
puter hardware or programming language. Solving problems requires being creative 
and “thinking outside the box.” You must be willing to try things that are different 
from the “accepted” solution.

You enjoy working with technology and enjoy being a lifelong learner. You 
enjoy puzzles and work tenaciously to find solutions. You probably don’t even notice 
that the hours have flown by as you are narrowing in on the answer. You enjoy 
building things, both in the actual world and in a “virtual world.” You can see how 
to customize a particular object to make it work in a specific environment. You like 
to tackle large projects and see them to completion. You like to build things that are 
useful to people and that will have a positive impact on their lives.

M00_HANL8814_08_GE_C00.indd   23 05/06/15   5:22 PM



24 Chapter 0  •  Computer Science as a Career Path

To be successful in the workplace, you must also be a good communicator. You 
should be able to explain your plans and solutions well to both technical and non-
technical people. You must be able to write clearly and concisely in the technical 
environment. Since most projects involve multiple people, it is important to work 
well in a group. If you plan to become a manager or run your own company, it is 
very important to be able to work with different personalities.

Frederick P. Brooks, famous for leading the team that developed the operat-
ing system for the IBM System/360, wrote a book in the 1970s titled The Mythical 
Man Month—Essays on Software Engineering. Even though much has changed in 
the computing world since he wrote the book, his essays still hold a lot of relevance 
today. He listed the “Joys of the Craft” as the following: First is the sheer joy of 
making things of your own design. Second is the pleasure of making things that 
are useful to and respected by other people. Third is the joy of fashioning complex 
puzzle-like entities into a system that works correctly. Fourth is the joy of always 
learning because of the nonrepetitive nature of the work. Finally, there is the joy 
of working with a very tractable medium. The programmer can create in his or her 
imagination and readily produce a product that can be tested and easily changed 
and reworked. Wouldn’t the sculptor or civil engineer enjoy such easy tractability!

Section 2	�T he College Experience: Computer Disciplines  
and Majors to Choose From

Most professionals in the computing industry have at least an undergraduate degree 
in mathematics, computer science, or a related field. Many have advanced degrees, 
especially those involved primarily in research or education.

The IBM System/360 was a mainframe computer system family announced by IBM in 1964. It 

was the first family of computers making a clear distinction between architecture and imple-

mentation, allowing IBM to release a suite of compatible designs at different price points. The 

design is considered by many to be one of the most successful computers in history, influenc-

ing computer design for years to come (see Figure 0.1). 

Figure 0.1

IBM introduced the 
system/360 family of business 
mainframe computers in 1964.
(©2012 akg-images/Paul Almasy/
Newscom. Unauthorized use not 

permitted.)

M00_HANL8814_08_GE_C00.indd   24 05/06/15   5:22 PM



25Section 2  •  The College Experience: Computer Disciplines and Majors to Choose From

Computing is a broad discipline that intersects many other fields such as math-
ematics, science, engineering, and business. Because of such a wide range of choices, 
it is impossible for anyone to be an expert in all of them. A career involving computing 
requires the individual to focus his or her efforts while obtaining a college degree.

There are many different degrees that involve computing offered at institutions 
of higher learning. These degrees can even be from different departments within 
the same institution. Although computing degrees can share some of the same 
courses, they can also be quite different from each other. Choosing among them 
can be confusing.

To ease this confusion, it is wise for students to consult with academic advisors 
in the computer science department, the computer or electrical engineering depart-
ment, and the business school to explore the options available in their specific institu-
tion. Next we summarize some of the degree programs that your institution may offer.

Computer Science

Computer science as a discipline encompasses a wide range of topics from theoreti-
cal and algorithmic foundations to cutting-edge developments. The work computer 
scientists are trained to do can be arranged into three categories:

■	 Designing and implementing useful software
■	 Devising new ways to use computers
■	 Developing effective ways to solve computing problems

A computer science degree consists of courses that include computing theory, pro-
gramming, and mathematics. These courses ultimately develop the logic and reasoning 
skills integral to becoming a computer scientist. The math sequence includes calculus I 
and II (and in many cases, calculus III) as well as discrete mathematics. Some students 
also study linear algebra and probability and statistics. A computer science degree 
offers a comprehensive foundation that permits graduates to understand and adapt to 
new technologies and new ideas. Computer science departments are often found at 
universities as part of the science, engineering, or mathematics divisions.

Computer scientists take on challenging programming jobs, supervise other 
programmers, and advise other programmers on the best approaches to be taken. 
Computer science researchers are working with scientists from other fields to 
perform such tasks as using databases to create and organize new knowledge, 
making robots that will be practical and intelligent aides, and using computers to 
help decipher the secrets of human DNA. Their theoretical background allows them 
to determine the best performance possible for new technologies and their study of 
algorithms helps them to develop creative approaches to new (and old) problems.

Computer Engineering

For students who are more interested in understanding and designing the actual 
computing devices, many opportunities are available in computer engineering, 

M00_HANL8814_08_GE_C00.indd   25 05/06/15   5:22 PM



26 Chapter 0  •  Computer Science as a Career Path

which is concerned with the design and construction of computers and computer-
based systems. A computer engineering degree involves the study of hardware, soft-
ware, communications, and the interaction among them, and is a customized blend 
of an electrical engineering degree with a computer science degree.

The computer engineering curriculum includes courses on the theories, prin-
ciples, and practices of traditional electrical engineering as well as mathematics 
through the standard calculus sequence and beyond. This knowledge is then applied 
in courses dealing with designing computers and computer-based devices. In addi-
tion, programming courses are required so that the computer engineer can develop 
software for digital devices and their interfaces.

Currently, an important area for computer engineers involves embedded sys-
tems. This involves the development of devices that have software and hardware 
embedded in them such as cell phones, digital music players, alarm systems, medical 
diagnostic devices, laser surgical tools, and so on. The devices a computer engineer 
might work with are limitless as he or she applies his or her knowledge of how to 
integrate hardware and software systems.

Information Systems

The information systems (IS) field focuses on integrating technology into businesses 
and other enterprises to manage their information in an efficient and secure man-
ner. In this area, technology is viewed as an instrument for generating, processing, 
and distributing information. Therefore, the focus in this field is on business and 
organizational principles.

Most IS programs are located in the business school of a university or college, 
and IS degrees combine business and computing coursework, and the math that is 
required has a business application focus. These degrees may be found under such 
programs as Computer Information Systems (CIS) or Management Information 
Systems (MIS). Degree program names are not always consistent, but they all have 
their focus on business principles and applications of technology with less emphasis 
on the theory of computer science or the digital design of computer engineering.

IS specialists must understand both technical and organizational factors, and 
must be able to help an organization determine how to use information and technol-
ogy to provide a competitive edge. These professionals serve as a bridge between 
the technical community and the management community within an organization. 
They are called on to determine the best way to use technology, organize informa-
tion, and communicate effectively.

Information Technology

An Information Technology (IT) program prepares students to meet the computer 
technology needs of business, government, healthcare, schools, and other organiza-
tions. IT has its emphasis on the technology itself, more than on the information 

M00_HANL8814_08_GE_C00.indd   26 05/06/15   5:22 PM



27Section 2  •  The College Experience: Computer Disciplines and Majors to Choose From

handled, the theory behind it, or how to design hardware or software. IT profes-
sionals work with computer systems to ensure they work properly, are secure, are 
upgraded and maintained, and are replaced as appropriate.

Because computers have become integral parts of the work environment for all 
employees at all levels of the organization, many enterprises must maintain depart-
ments of IT workers. Organizations of every kind are dependent on information 
technology on a daily basis and the need for qualified workers is great.

Degree programs in IT are commonly found in business or information man-
agement departments, or as an alternate degree in a computer science depart-
ment. IT programs in business departments focus on using applications to meet 
the requirements of networking, systems integration, and resource planning. The 
emphasis is less on programming and more on using programs already written to 
the best advantage. IT programs in computer science departments often have more 
emphasis on programming for computer users, with a focus on writing software for 
interactive web pages, multimedia, and cloud computing.

IT specialists select appropriate hardware and software products for an organi-
zation and then integrate these products within the existing infrastructure. They 
install and customize and maintain the software as needed. Other examples of 
responsibilities include network administration and security, design and imple-
mentation of web pages, development of multimedia resources, oversight of e-mail 
systems, and installation of communication components. User support and training 
are often important responsibilities for the IT professional as well.

Software Engineering

Software engineering (SE) is the discipline of developing and maintaining large 
software systems. These systems must behave reliably and efficiently, be affordable, 
and satisfy all requirements defined for them. SE seeks to integrate the theory of 
computer science and mathematics with the practical engineering principles devel-
oped for physical objects.

An SE degree program is closely related to the computer science degree 
program, and they are usually offered within the same department. In fact, most 
computer science curricula require one or more software engineering courses. An 
SE degree can be considered a specialized degree within the confines of the field 
of computer science.

SE students learn more about software reliability and maintenance of large 
systems and focus more on techniques for developing and maintaining software that 
is engineered to be correct from its inception. Most programs require SE students 
to participate in group projects for the development of software that will be used in 
earnest by others. Students assess customer needs, develop usable software, test the 
product thoroughly, and analyze its usefulness.

Professionals who hold a software engineering degree expect to be involved 
with the creation and maintenance of large software systems that may be used by 

M00_HANL8814_08_GE_C00.indd   27 05/06/15   5:22 PM



28 Chapter 0  •  Computer Science as a Career Path

many different organizations. Their focus will be on the design principles that make 
the system viable for many people and through many years.

Although an SE degree has a recognized description, the term software engineer 
is merely a job label in the workplace. There is no standard definition for this term 
when used in a job description, and its meaning can vary widely among employers. 
An employer may think of a programmer or an IT specialist as a software engineer.

Mixed Disciplinary Majors

Technology is opening doors for fields of study that combine different sciences or 
engineering fields with computing as illustrated by Figure 0.2. Institutes of higher 
learning have responded by offering courses or programs for multidisciplinary 
majors. Some examples follow.

■	 Bioinformatics is the use of computer science to maintain, analyze, and 
store biological data as well as to assist in solving biological problems—usually  
on the molecular level. Such biological problems include protein folding, 
protein function prediction, and phylogeny (the history, origin, and evolution 
of a set of organisms). The core principle of bioinformatics involves using 
computing resources to help solve problems on scales of magnitude too great 
for human observation.

■	 Artificial Intelligence (AI) is the implementation and study of systems that 
can exhibit autonomous intelligence or behaviors. AI research draws from 
many fields including computer science, psychology, philosophy, linguistics, 
neuroscience, logic, and economics. Applications include robotics, control 
systems, scheduling, logistics, speech recognition, handwriting recognition, 
understanding natural language, proving mathematical theorems, data mining, 
and facial recognition.

■	 Computer Forensics is a branch of forensic science pertaining to legal 
evidence that may be found in computers and digital storage devices. The 
collection of this evidence must adhere to standards of evidence admissible in 
a court of law. Computer forensics involves the fields of law, law enforcement, 
and business.

■	 Cryptology (or cryptography) is the practice and study of hiding information 
and involves mathematics, computer science, and engineering. Electronic 
data security for commerce, personal uses, and military uses continue to be of 
vast importance.

■	 Mechatronics is the combination of mechanical engineering, electronic 
engineering, and software engineering in order to design advanced hybrid 
systems. Examples of mechatronics include production systems, planetary 
exploration rovers, automotive subsystems such as anti-lock braking systems, 
and autofocus cameras.

Even when the definitions are given for the different computing disciplines men-
tioned in this chapter, it is easy to see that there is great overlap among all of them. 

Biology Bioinformatics
Computer
science

Artificial
intelligence

Engineering
and robotics

Computer
science

Philosophy

Psychology

Linguistics

Forensic
science

Law enforcement

Computer
science

Computer
forensics

Mathematics Cryptology
Computer
science

Mechanical
engineering

Electrical engineering

Computer
science

Mechatronics

Figure 0.2

Illustrations of 
the overlapping 
fields within mixed 
disciplinary majors

M00_HANL8814_08_GE_C00.indd   28 05/06/15   5:22 PM



29

In fact, many professionals who have earned a computer science degree may be 
working in jobs that are closer to an information systems description or vice versa. 
The student is encouraged to choose a computing field that seems closest to his or 
her personal goals. 

Section 3	 Career Opportunities
The Bureau of Labor Statistics is the principal fact-finding agency for the U.S. 
Federal Government in the field of labor economics and statistics. This agency 
publishes The Occupational Outlook Handbook, which is a nationally recognized  
source of career information, designed to provide valuable assistance to individu-
als making decisions about their future work lives. The Handbook is revised every 
two years. Table 0.1 gives an overview of some of the major computer occupations 
tracked by the U.S. Bureau of Labor Statistics.

The Demand in the United States and in the World

According to the BLS Occupational Outlook Handbook, software developer,  
database administrator, and network/computer systems administrator are three of the 
occupations projected to grow at the fastest rates over the 2010–2020 decade. Strong 
employment growth combined with a limited supply of qualified workers will result 
in excellent employment prospects. Those with practical experience and at least a 
bachelor’s degree in one of the computing fields described in Section 2 should have 
the best opportunities. Employers will continue to seek computer professionals with 
strong programming, systems analysis, interpersonal, and business skills.

The growing need for computer professionals is increased by the ongoing 
retirement of a generation of baby boomers, and all of this is occurring as the U.S. 
government projects continued rapid growth in many computer science and IT 
occupations.

Today’s students need not worry about the impact that outsourcing computer 
jobs to other countries will have on their ability to find a job. The fact is that many 
companies have been disappointed in the results when outsourcing entire projects. 
Some of the more mundane aspects of coding can be outsourced, but the more crea-
tive work is best kept in house. For example, during the design and development of 
a new system, interaction with specialists from other disciplines and communication 
with other team members and potential system users are of utmost importance. 
These activities are negatively impacted by communication difficulties across cul-
tures and long distances. Many companies are rethinking outsourcing and doing 
more system development at home.

The number of graduates from the computing fields will not meet the demand in 
the marketplace in the foreseeable future. Projections and statistics show that there 
will be plenty of jobs to be offered to the qualified computer professional and the 
salaries will be higher than the average full-time worker earns in the United States.

Section 3  •  Career Opportunities

M00_HANL8814_08_GE_C00.indd   29 05/06/15   5:22 PM



30 Chapter 0  •  Computer Science as a Career Path

Table 0.1  Computer, Computer Engineering, and Information Technology Occupations

Occupation Job Summary Entry-Level Education

Computer and 
Information 
Research Scientists

Computer and information research scientists invent and 
design new technology and find new uses for existing tech-
nology. They study and solve complex problems in comput-
ing for business, science, medicine, and other uses.

Doctoral or professional 
degree

Computer 
Programmers

Computer programmers write code to create software pro-
grams. They turn the program designs created by software 
developers and engineers into instructions that a computer 
can follow.

Bachelor’s degree

Computer Support 
Specialists

Computer support specialists provide help and advice to 
people and organizations using computer software or equip-
ment. Some, called technical support specialists, support 
information technology (IT) employees within their organiza-
tion. Others, called help-desk technicians, assist non-IT users 
who are having computer problems.

Some college, no degree

Computer Systems 
Analysts

Computer systems analysts study an organization’s current 
computer systems and procedures and make recommenda-
tions to management to help the organization operate more 
efficiently and effectively. They bring business and informa-
tion technology (IT) together by understanding the needs 
and limitations of both.

Bachelor’s degree

Database 
Administrators

Database administrators use software to store and organize 
data, such as financial information and customer shipping 
records. They make sure that data are available to users and 
are secure from unauthorized access.

Bachelor’s degree

Information Security 
Analysts, Web 
Developers, and 
Computer Network 
Architects

Information security analysts, web developers, and computer 
network architects all use information technology (IT) to 
advance their organization’s goals. Security analysts ensure 
a firm’s information stays safe from cyber attacks. Web 
developers create websites to help firms have a public face. 
Computer network architects create the internal networks  
all workers within organizations use.

Bachelor’s degree

Network and 
Computer Systems 
Administrators

Network and computer systems administrators are respon-
sible for the day-to-day operation of an organization’s 
computer networks. They organize, install, and support 
an organization’s computer systems, including local area 
networks (LANs), wide area networks (WANs), network seg-
ments, intranets, and other data communication systems.

Bachelor’s degree

M00_HANL8814_08_GE_C00.indd   30 05/06/15   5:22 PM




